↳ Prolog
↳ PrologToPiTRSProof
convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)
CONVERT_IN_GGA(.(0, XS), B, X) → U1_GGA(XS, B, X, convert_in_gga(XS, B, Y))
CONVERT_IN_GGA(.(0, XS), B, X) → CONVERT_IN_GGA(XS, B, Y)
CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → U3_GGA(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → CONVERT_IN_GGA(.(Y, XS), B, X)
U1_GGA(XS, B, X, convert_out_gga(XS, B, Y)) → U2_GGA(XS, B, X, times_in_gga(Y, B, X))
U1_GGA(XS, B, X, convert_out_gga(XS, B, Y)) → TIMES_IN_GGA(Y, B, X)
TIMES_IN_GGA(s(X), Y, Z) → U5_GGA(X, Y, Z, times_in_gga(X, Y, U))
TIMES_IN_GGA(s(X), Y, Z) → TIMES_IN_GGA(X, Y, U)
U5_GGA(X, Y, Z, times_out_gga(X, Y, U)) → U6_GGA(X, Y, Z, plus_in_gga(Y, U, Z))
U5_GGA(X, Y, Z, times_out_gga(X, Y, U)) → PLUS_IN_GGA(Y, U, Z)
PLUS_IN_GGA(s(X), Y, s(Z)) → U4_GGA(X, Y, Z, plus_in_gga(X, Y, Z))
PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)
convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
CONVERT_IN_GGA(.(0, XS), B, X) → U1_GGA(XS, B, X, convert_in_gga(XS, B, Y))
CONVERT_IN_GGA(.(0, XS), B, X) → CONVERT_IN_GGA(XS, B, Y)
CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → U3_GGA(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → CONVERT_IN_GGA(.(Y, XS), B, X)
U1_GGA(XS, B, X, convert_out_gga(XS, B, Y)) → U2_GGA(XS, B, X, times_in_gga(Y, B, X))
U1_GGA(XS, B, X, convert_out_gga(XS, B, Y)) → TIMES_IN_GGA(Y, B, X)
TIMES_IN_GGA(s(X), Y, Z) → U5_GGA(X, Y, Z, times_in_gga(X, Y, U))
TIMES_IN_GGA(s(X), Y, Z) → TIMES_IN_GGA(X, Y, U)
U5_GGA(X, Y, Z, times_out_gga(X, Y, U)) → U6_GGA(X, Y, Z, plus_in_gga(Y, U, Z))
U5_GGA(X, Y, Z, times_out_gga(X, Y, U)) → PLUS_IN_GGA(Y, U, Z)
PLUS_IN_GGA(s(X), Y, s(Z)) → U4_GGA(X, Y, Z, plus_in_gga(X, Y, Z))
PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)
convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)
convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
PLUS_IN_GGA(s(X), Y) → PLUS_IN_GGA(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
TIMES_IN_GGA(s(X), Y, Z) → TIMES_IN_GGA(X, Y, U)
convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
TIMES_IN_GGA(s(X), Y, Z) → TIMES_IN_GGA(X, Y, U)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
TIMES_IN_GGA(s(X), Y) → TIMES_IN_GGA(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → CONVERT_IN_GGA(.(Y, XS), B, X)
CONVERT_IN_GGA(.(0, XS), B, X) → CONVERT_IN_GGA(XS, B, Y)
convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → CONVERT_IN_GGA(.(Y, XS), B, X)
CONVERT_IN_GGA(.(0, XS), B, X) → CONVERT_IN_GGA(XS, B, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
CONVERT_IN_GGA(.(0, XS), B) → CONVERT_IN_GGA(XS, B)
CONVERT_IN_GGA(.(s(Y), XS), B) → CONVERT_IN_GGA(.(Y, XS), B)
No rules are removed from R.
CONVERT_IN_GGA(.(0, XS), B) → CONVERT_IN_GGA(XS, B)
CONVERT_IN_GGA(.(s(Y), XS), B) → CONVERT_IN_GGA(.(Y, XS), B)
POL(.(x1, x2)) = 2·x1 + x2
POL(0) = 0
POL(CONVERT_IN_GGA(x1, x2)) = 2·x1 + x2
POL(s(x1)) = 2·x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof